Spectral decomposition of real circulant matrices
نویسندگان
چکیده
منابع مشابه
An application of the modified Leverrier-Faddeev algorithm to the singular value decomposition of block-circulant matrices and the spectral decomposition of symmetric block- circulant matrices
The Leverrier-Faddeev algorithm, as modified by Gower (1980), is little-known but is useful for deriving the algebraic, rather than numerical, spectral structure of matrices occurring in statistical methodology. An example is given of deriving explicit forms for the singular value decomposition of any block-circulant matrix and the spectral decomposition of any symmetric block-circulant matrix....
متن کاملThe Limiting Spectral Measure for the Ensemble of Generalized Real Symmetric Block m-Circulant Matrices
Given an ensemble of N × N random matrices with independent entries chosen from a nice probability distribution, a natural question is whether the empirical spectral measures of typical matrices converge to some limiting measure as N → ∞. It has been shown that the limiting spectral distribution for the ensemble of real symmetric matrices is a semi-circle, and that the distribution for real sym...
متن کاملOn the spectral norms of some special g-circulant matrices
In the present paper, we give upper and lower bounds for the spectral norm of g-circulant matrix, whose the rst row entries are the classical Horadam numbers U (a,b) i . In addition, we also establish an explicit formula of the spectral norm for g-circulant matrix with the rst row ([U (a,b) 0 ] , [U (a,b) 1 ] , · · · , [U (a,b) n−1 ]).
متن کاملThe Spectral Decomposition of Some Tridiagonal Matrices
Some properties of near-Toeplitz tridiagonal matrices with specific perturbations in the first and last main diagonal entries are considered. Applying the relation between the determinant and Chebyshev polynomial of the second kind, we first give the explicit expressions of determinant and characteristic polynomial, then eigenvalues are shown by finding the roots of the characteristic polynomia...
متن کاملComputation of the q-th roots of circulant matrices
In this paper, we investigate the reduced form of circulant matrices and we show that the problem of computing the q-th roots of a nonsingular circulant matrix A can be reduced to that of computing the q-th roots of two half size matrices B - C and B + C.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2003
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(02)00664-x